Dispersive Estimates for Matrix Schrödinger Operators in Dimension Two

نویسندگان

  • M. BURAK
  • WILLIAM R. GREEN
  • M. B. ERDOĞAN
  • W. R. GREEN
چکیده

We consider the non-selfadjoint operator H = [ −∆ + μ− V1 −V2 V2 ∆− μ+ V1 ] where μ > 0 and V1, V2 are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave. Under natural spectral assumptions we obtain L(R)× L(R)→ L∞(R2)× L∞(R2) dispersive decay estimates for the evolution ePac. We also obtain the following weighted estimate ‖wePacf‖L∞(R2)×L∞(R2) . 1 |t| log(|t|) ‖wf‖L1(R2)×L1(R2), |t| > 2, with w(x) = log(2 + |x|).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Estimates for Schrödinger Operators with Measure-valued Potentials in R

We prove dispersive estimates for the linear Schrödinger evolution associated to an operator −∆+V in R3, where the potential is a signed measure with fractal dimension at least 3/2.

متن کامل

Wave Operator Bounds for 1-dimensional Schrödinger Operators with Singular Potentials and Applications

Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.

متن کامل

Dispersive Estimates for Schrödinger Operators in Dimension Two with Obstructions at Zero Energy

We investigate L1(R2) → L∞(R2) dispersive estimates for the Schrödinger operator H = −∆+V when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the t−1 decay rate. We also show that if there is a p-wave resonance or an eigenvalue at zero energy then there is a time dependent oper...

متن کامل

A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions

In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...

متن کامل

Zero Energy Scattering for One-dimensional Schrödinger Operators and Applications to Dispersive Estimates

We show that for a one-dimensional Schrödinger operator with a potential, whose (j + 1)-th moment is integrable, the j-th derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrödinger equation in the resonant case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012